3G 100-4.2: 1980 *Incorporating Amendment No. 1*

Specification for

General requirements for equipment for use in aircraft —

Part 4: Electrical equipment —

Section 2: Electromagnetic interference at radio and audio frequencies

UDC 629.7.05/.06:621.391.82

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

Foreword

This British Standard is part of a composite standard in the Aerospace Series of British Standards specifying general requirements for equipment in aircraft. An introduction to the complete standard is given in BS 3G 100-0.

This 1979 revision replaces the October 1973 version of 3G 100-4.2.

A major revision of BS 2G 100-2:1962 was undertaken in 1965 and the document was published as BS 2G 100-2.2:1967. This revision included, for the first time, requirements for the use of peak measuring equipment and also requirements to check the susceptibility of sensitive avionic equipment to r.f. signals and noise both conducted along power supply wiring and radiated. This revision ensured that some degree of correlation could be demonstrated between the British Standard and the various US military specifications and standards and also RTCA DO 138 which were taken into account in the discussions leading up to the revision. The standard was updated in 1973 and published as 3G 100-4.2:1973.

This current revision takes account of the considerable experience which has been gained in laboratories and test houses in recent years and also the results of surveys which have been made to determine the electromagnetic environment in a wide range of aircraft. In addition, due account has been taken of the requirements in current USA specifications MIL-STD-461A and MIL-STD-462, RTCA DO 160 and EUROCAE Publication ED 14.

The main changes in this revision include better definition of test conditions. particularly where circuit loading is concerned, revised levels for susceptibility tests including requirements for modulated signals, and separate requirements, which are generally more onerous, for military aircraft.

It has to be emphasized that although compliance with this standard will provide considerable improvement in the operational performance of the aircraft and its equipment from the interference standpoint it does not guarantee overall electromagnetic compatibility.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, pages i and ii, pages 1 to 23 and a back cover.

This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover.

This British Standard, having been prepared under the direction of the Aerospace Standards Committee, was published under the authority of the Executive Board and comes into effect on 31 January 1980

Amendments issued since publication

	Amd. No.	Date of issue	Comments
	3572	November 1985	Indicated by a sideline in the margin
;			

© BSI 03-1999

The following BSI references relate to the work on this standard: Committee reference ACE/41 Draft for comment 77/73987 DC

ISBN 0 580 10950 X

Contents

		Page
Fore	eword In	nside front cover
1	Scope	1
2	References	1
3	Definitions	1
4	Measurement	2
5	Measuring techniques and control of interference	3
6	Limits	6
App	endix A Aerial systems for emission and susceptibility testin	ng 18
App	endix B Design aspects of transmission lines for	
susc	eptibility tests at frequencies up to 30 MHz	18
Appe	endix C Radiated susceptibility testing above 30 MHz	20
Figu	re 1 — Impedance/frequency characteristic of line	
impe	edance stabilizing network	7
Figu	are 2 — Circuit diagram of line impedance stabilizing netwo	rk 7
Figu	are 3 — Typical arrangement for test for conducted interfere	ence
mes	urements using line stabilizing networks in power lines	8
Figu	re 4 — Broad band conducted interference limits, using	
stab	ilizing network	9
Figu	ire 5 — Narrow band conducted interference limits using	10
Figure	abilizing network	10
rigu	g current probe	11
Figu	re 7 — Narrow band conducted interference limits	11
usin	g current probe	12
Figu	re 8 — Typical arrangement for tests for radiated	
inter	rference, using vertical rod aerial	13
Figu	re 9 — Typical arrangement for tests for radiated	
inter	rference and for susceptibility to radiated interference	14
Figu	re 10 — Broad band radiated interference limits	15
Figu	re 11 — Narrow band radiated interference limits	15
Figu	re 12 — Typical arrangement for test for susceptibility	
to co	onducted interference at audio frequencies	16
Figu	are 13 — Signal level for test of susceptibility to conducted	
inter	rference at radio frequencies	16
Figu	re 14 — Signal level for test of susceptibility to radiated	10
Intel	Terence at radio frequencies	17
Figu	ire 15 — Typical parallel plate for susceptibility testing	19
Figu	ated suggestibility tests	20
Figure	area susceptionity tests	20
mon	oconical aerial for field measurement (180 MHz to 540 MHz	z) 21
Figu	18 - Detail of cone construction of monoconical aerial	-, 21
Figu	re 19 — Detail of base of monoconical aerial	23
Figu	re 20 — Typical calibration curve for monoconical aerial	20
$\frac{1}{T_{a}h}$	e 1 — Details of inductor shown in Figure 2	
rabi	E i Details of inductor showin in Figure 2	1